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Statistical memristor model and its applications
in neuromorphic computing

Hai (Helen) Li and Robinson E. Pino

Abstract More than forty years ago, Professor Chua predicted the existence of the
memristor to complete the set of passive devices that previously includes only re-
sistor, capacitor, and inductor. However, till 2008 the first physical realization of
memristors was demonstrated by HP Lab. The unique properties of memristor create
great opportunities in future system design. For instance, the memristor has demon-
strated the similar function as synapse, which makes it promising to utilize mem-
ristor in neuromorphic circuits design. However, as a nano-scale device, the process
variation control in the manufacturing of memristors is very difficult. The impact
of the process variations on a neural network system that relies on the continuous
(analog) states of the memristor could be significant due to the deviation of the
memristor state from the designed value. So a complete process variation analysis
on memristor is necessary for the application in neural network. Due to the different
physical mechanisms, TiO2-based memristor and spintronic memristor demonstrate
very different electrical characteristics even when exposing the two types of de-
vices to the same excitations and under the same process variation conditions. In
this work, the impact of different geometry variations on the electrical properties
of these two different types of memristors was evaluated by conducting the ana-
lytic modeling analysis and Monte-Carlo simulations. A simple algorithm, which is
based on the latest characterization method of LER (line edge roughness) and thick-
ness fluctuation problems, was proposed to generate a large volume of geometry
variation-aware three-dimensional device structures for Monte-Carlo simulations.
We investigate the different responses of the static and memristive parameters of
the two devices and analyze its implication to the electrical properties of the mem-
ristors. Furthermore, a process-variation aware device model can be built based on
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2 Hai (Helen) Li and Robinson E. Pino

our work. Both corner model and statistical model can be provided depending on
users’ requirements. Our device models make it possible for scientists and engineers
to design neuromorphic circuits with memristive devices, and therefore, to convert
virtual neural network in super computer to the real hardware memristive system in
the future. Rather than the existing crossbar-based neuron network designs, we fo-
cus on memristor-based synapse and the corresponding training circuit to mimic the
real biological system. The basic synapse design is presented, and the training shar-
ing scheme and explore design implication on multi-synapse neuron system have
been explored.

1 Introduction

In 1971, Professor Leon Chua predicted the existence of the memristor [1]. How-
ever, the first physical realization of memristors was demonstrated by HP Lab very
recently in 2008, in which the memristive effect was achieved by moving the dop-
ing front along a TiO2 thin-film device [2]. Soon, memristive systems on spintronic
devices were proposed [3].

The unique properties of memristors create great opportunities in future system
design. For instance, the non-volatility and excellent scalability make it a promis-
ing candidate as the next-generation high-performance high-density storage tech-
nology [4]. More importantly, memristors have an intrinsic and remarkable feature
called a “pinched hysteresis loop” in the i− v plot, that is, memristors can “remem-
ber” the total electric charge flowing through them by changing their resistances
(memristances) [5]. For example, the applications of this memristive behavior in
electronic neural networks have been extensively studied [6][7].

As process technology shrinks down to decananometer (sub-50nm) scale, device
parameter fluctuations incurred by process variations have become a critical issue
affecting the electrical characteristics of devices [8]. The situation in a memristive
system could be even worse when utilizing the analog states of the memristors in de-
sign: variations of device parameters, e.g. the instantaneous memristance, can result
in the shift of electrical responses, e.g. current. The deviation of the electrical exci-
tations will affect memristance because the total charge through a memristor indeed
is the historic behavior of its current profile. Previous works on memristor variation
analysis mainly focused on its impacts on non-volatile memory design [4][9]. How-
ever, the systematic analysis and quantitative evaluation on how process variations
affect the memristive behavior still needs to be done. Our work explores the impli-
cations of the device parameters of memristors to the circuit design by taking into
account the impact of process variations. The evaluations were conducted based on
both theoretical analysis and Monte Carlo simulations.

The device geometry variations significantly influence the electrical properties
of nano-devices [10]. For example, the random uncertainties in lithography and pat-
terning processes lead to the random deviation of line edge print-images from their
ideal pattern, which is called line edge roughness (LER) [11]. Thickness fluctuation
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Statistical memristor model and its applications in neuromorphic computing 3

(TF) is caused by deposition processes in which mounds of atoms form and coarsen
over time. As technology shrinks, the geometry variations do not decrease accord-
ingly. In this work, we propose an algorithm to generate a large volume of three-
dimensional memristor structures to mimic the geometry variations for Monte-Carlo
simulations. The LER model is based on the latest LER characterization method for
electron beam lithography (EBL) technology from top-down scanning electron mi-
croscope (SEM) measurement [12].

Some previous experimental results showed that the geometry variations are the
dominate fluctuation source as process technology further scales down [8]. There-
fore, we mainly focus on the impacts of geometry variations in this work. However,
other process variations such as random discrete doping (RDD) could also result
in the fluctuations of the electrical properties of devices. RDD is an important and
complex contributor to the variation in MOSFET and other nano-devices since tech-
nology node becomes 90nm or less. Statistically, RDD is independent to LER and
TF [13][14], the study of RDD on memristor is a good complementary portion to
this work. We will explore it in the future work.

Memristive function can be achieved by various materials and device structures.
However, the impact of the process variations on the electrical properties of differ-
ent memristors could be very different even under the same excitations. Therefore,
two types of memristors, TiO2-based memristor [3] and spintronic memristor [15],
are analyzed and evaluated in our work. These two examples are selected because
they respectively represent two important mechanisms: solid state and magnetic.
However, our proposed modeling methodologies and design philosophies are not
limited by the specific types of devices and can be easily extended to the other
structures/materials with necessary modifications.

Our contributions can be summarized as follows:

• We investigate the impacts of geometry variations on the electrical properties of
memristors and explore their implications to circuit design. Monte Carlo simula-
tions are conducted for quantitative evaluations.

• An algorithm for fast generation of three-dimensional memristor structures is
proposed to mimic the geometry variations incurred by EBL technology. The
generated samples are used for Monte-Carlo simulations.

• The memristive behavior analysis and evaluations of both TiO2-based and spin-
tronic memristors are presented.

• We propose a single memristor-based synapse structure and the corresponding
training circuit design that can be used in neuromorphic computing system. The
design optimization and its implementation in multi-synapse systems are dis-
cussed.
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4 Hai (Helen) Li and Robinson E. Pino

2 Preliminaries

2.1 Memristor Theory

The original definition of the memristor is derived from circuit theory: besides re-
sistor, capacitor and inductor, there must exist the fourth basic two-terminal element
that uniquely defines the relationship between the magnetic flux (ϕ) and the electric
charge (q) passing through the device [1], or

dϕ = M ·dq. (1)

Considering that magnetic flux and electric charge are the integrals of voltage (V )
and current (I) over time, respectively, the definition of the memristor can be gener-
alized as: {

V = M(ω, I) · I
dω

dt = f (ω, I)
(2)

Here, ω is a state variable; M(ω, I) represents the instantaneous memristance,
which varies over time. For a “pure” memristor, neither M(ω, I) nor f (ω, I) is an
explicit function of I [5].

2.2 Basics of TiO2 Thin-Film Memristor

In 2008, HP Lab demonstrated the first intentional memristive device by using a
Pt/TiO2/Pt thin-film structure [2]. The conceptual view is illustrated in Fig. 1(a):
two metal wires on Pt are used as the top and bottom electrodes, and a thick ti-
tanium dioxide film is sandwiched in between. The stoichiometric TiO2 with an
exact 2:1 ratio of oxygen to titanium has a natural state as an insulator. However, if
the titanium dioxide is lacking a small amount of oxygen, its conductivity becomes
relatively high like a semiconductor. We call it oxygen-deficient titanium dioxide
(TiO2−x) [9]. The memristive function can be achieved by moving the doping front:

Doping 
front

VoltageLz
h

R

R

(a)

Pt

Pt

TiO2

TiO2-x

RL·α

RH·(1-α)

(a) (b)

Fig. 1 TiO2 thin-film memristor. (a) structure, and (b) equivalent circuit.
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Statistical memristor model and its applications in neuromorphic computing 5

A positive voltage applied on the top electrode can drive the oxygen vacancies into
the pure TiO2 part and therefore lower the resistance continuously. On the other
hand, a negative voltage applied on the top electrode can push the dopants back to
the TiO2−x part and hence increase the overall resistance. For a TiO2-based mem-
ristor, RL (RH ) is used to denote the lowest (highest) resistance of the structure.

Fig. 1(b) illustrates a coupled variable resistor model for a TiO2-based memristor,
which is equivalent to two series-connected resistors. The overall resistance can be
expressed as

M(α) = RL ·α +RH · (1−α). (3)

Here α (0≤ α ≤ 1) is the relative doping front position, which is the ratio of doping
front position over the total thickness of TiO2 thin-film.

The velocity of doping front movement v(t), which is driven by the voltage ap-
plied across the memristor V (t) can be expressed as

v(t)
h

=
dα

dt
= µv ·

RL

h2 ·
V (t)
M(α)

(4)

where, µv is the equivalent mobility of dopants, h is the total thickness of the TiO2
thin-film; and M(α) is the total memristance when the relative doping front position
is α .

Filamentary conduction has been observed in nano-scale semiconductors, such
as TiO2. It shows that the current travels through some high conducting filaments
rather than passes the device evenly [17][18]. However, there is no device model
based on filamentary conduction mechanism yet. Considering that the main focus
of this work is the process variation analysis method of the memristor, which can be
separated from the explicit physical model of memristor, the popular bulk model of
TiO2 is applied. We will extend the research by integrating the device model based
on filamentary conduction in our future work.

Recent experiments showed that µv is not a constant but grows exponentially
when the bias voltage goes beyond certain threshold voltage [19]. Nevertheless, the
structure of TiO2 memristor model, i.e., Eq. (3), still remains valid.

2.3 Basics of Spintronic Memristor

Among all the spintronic memristive devices, the one based on magnetic tun-
neling junction (MTJ) could be the most promising one because of its simple
structure [3][15]. The basic structure of magnetic memristor could be either gi-
ant magneto-resistance (GMR) or tunneling magneto-resistance (TMR) MTJs. We
choose TMR-based structure shown in Fig. 2(a) as the objective of this work be-
cause it has a bigger difference between the upper and the lower bounds of total
memristance (resistance).

There have been many research activities investigated on the spintronic mem-
ristor or the similar device structure, such as the racetrack structure proposed by
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Metal
VoltageLz

h Metal

Free 
layer

Domain 
wall

h

RL RH

Reference 
layer

layerwall 
L

1-

Metal(a) (b)

Fig. 2 TMR-based spintronic memristor. (a) structure, and (b) equivalent circuit.

IBM [20]. Very recently, NEC Lab reported the free layer switching through the
domain wall movement [21], which indeed is a spintronic memristor.

An MTJ is composed of two ferromagnetic layers and an oxide barrier layer,
e.g. MgO. The bottom ferromagnetic layer is called reference layer, of which the
magnetization direction is fixed by coupling to a pinned magnetic layer. The top
ferromagnetic layer called free layer is divided into two magnetic domains by a
domain-wall: the magnetization direction of one domain is parallel to the reference
layer’s, while the magnetization direction of the other domain is anti-parallel to the
reference layer’s.

The movement of the domain wall is driven by the spin-polarized current, which
passes through the two ferromagnetic layers. For example, applying a positive volt-
age on free layer can impel the domain wall to increase the length of the magnetic
domain with a magnetization direction parallel to the reference layer’s and hence
reduce the MTJ resistance. On the other hand, applying a positive voltage on ref-
erence layer will reduce the length of the magnetic domain with a magnetization
direction parallel to the reference layer’s. Therefore, the MTJ resistance increases.
If the width of the domain with the magnetization direction anti-parallel (parallel)
to the reference layer’s is compressed to close to zero, the memristor has the lowest
(highest) resistance, denoted as RL (RH ).

As shown in Fig. 2(b), the overall resistance of a TMR-base spintronic mem-
ristor can be modeled as two parallel connected resistors with resistances RL/α

and RH/(1−α), respectively [15]. This structure has also been experimentally
proved [22]. Here α (0 ≤ α ≤ 1) represents the relative domain wall position as
the ratio of the domain wall position (x) over the total length of the free layer (L).
The overall memristance can be expressed as

M(α) =
RL ·RH

RH ·α +RL(1−α)
. (5)

How fast the domain-wall can move is mainly determined by the strength of spin-
polarized current. More precisely, the domain-wall velocity v(t) is proportional to
the current density J [23]. We have
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Statistical memristor model and its applications in neuromorphic computing 7

J(t) =
V (t)

M(α) ·L · z
, (6)

and

v(t) =
dα(t)

dt
=

Γv

L
· Je f f (t),Je f f =

{
J,J≥ Jcr
0,J≤ Jcr.

(7)

Here Γv is the domain wall velocity coefficient, which is related to device structure
and material property. L and z are the total length and width of the spintronic mem-
ristor, respectively. The domain wall movement in the spintronic memristor happens
only when the applied current density (J) is above the critical current density (Jcr)
[23][24][25][26][27].

3 Mathematical Analysis

The actual length (L) and width (z) of a memristor is affected by LER. The variation
of thickness (h) of a thin film structure is usually described by TF. As a matter of
convenience, we define that, the impact of process variations on any given variable

can be expressed as a factor θ =
ω ′

ω
, where ω is its ideal value, and ω ′ is the actual

value under process variations.
The ideal geometry dimensions of the TiO2 thin-film memristor and spintronic

memristor used in this work are summarized in Table 1.

3.1 TiO2 Thin-Film Memristor

In TiO2 thin-film memristors, the current passes through the device along the thick-
ness (h) direction. Ideally the doping front has an area S = L · z. To simulate the im-
pact of LER on the electrical properties, the memristor device is divided into many
small filaments between the two electrodes. Each filament i has a cross-section area
ds and a thickness h. Fig. 3 demonstrates a non-ideal 3D structure of a TiO2 memris-
tor (i.e., with geometry variations in consideration), which is partitioned into many
filaments in statistical analysis.

As shown in Fig. 3, ideally, the cross-section area of a filament is ds/S of the
entire device area and its thickness is h. Thus, for filament i, the ideal upper bound
and lower bound of the memristance can be expressed as

Table 1 The device dimensions of memristors.
Length(L) Width(z) Thickness(h)

Thin-film 50 nm 50 nm 10 nm
Spintronic 200 nm 10 nm 7 nm

Springer Series in Cognitive and Neural Stystems 
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8 Hai (Helen) Li and Robinson E. Pino

Ri,H = RH ·
S
ds

,and Ri,L = RL ·
S
ds

. (8)

Here, θi,s represents the variation ratio on the cross-section area ds, which is
caused by 2-D LER. Similarly, θi,h is the variation ratio on thickness h due to TF.
The resistance of a filament is determined by its section area and thickness, i.e.,
R = ρ · h

s , where ρ is the resistance density. Therefore, the actual upper and the
lower bound under the process variations can be expressed as

R′i,H = Ri,H ·
θi,h

θi,s
,and R′i,L = Ri,L ·

θi,h

θi,s
. (9)

If a filament is small enough, we can assume it has a flat doping front. Then, the
actual doping front velocity in filament i considering process variations can be cal-
culated by replacing the ideal values with actual values in Eq.(4). We have

v′i(t) = µv ·
R′i,L
h′2
· V (t)

M′i(α
′
i )
. (10)

Here h′ and M′i are the actual thickness and memristance of filament i. Then, we can
get a set of related equations for filament i, including the doping front position

α
′
i (t) =

∫ t

0
v′(τ) ·dτ, (11)

the corresponding memristance

M′i(α
′
i ) = α

′
i ·R′i,L +(1−α

′
i ) ·R′i,H , (12)

and the current through the filament i

I′i (t) =
V (t)

M′i(α
′
i )
. (13)

By combining Eq. (10) – (13), the doping front position in every filament i under
process variations a′i(t) can be obtained by solving the differential equation

dα ′i (t)
dt

= µv ·
R′i,L
h′2
· V (t)

α ′i (t) ·R′i,L +(1−α ′i (t)) ·R′i,H
. (14)

Eq. (14) indicates that the behavior of the doping front movement is dependent
on the specific electrical excitations, e.g., V (t).

For instance, applying a sinusoidal voltage source to the TiO2 thin-film memris-
tor such as

V (t) =Vm · sin(2π f · t), (15)

the corresponding doping front position of filament i can be expressed as:
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3−D model for TiO2 memristor

Fig. 3 An example of 3D TiO2 memristor structure, which is partitioned into many filaments in
statistical analysis.

α
′
i (t) =

Ri,H −
√

R2
i,H −A ·B(t) · 2

θ 2
i,h
+2C ·A · θi,s

θi,h

A
. (16)

Where, A = Ri,H −Ri,L, B(t) = µv ·Ri,L ·Vm · cos(2π f · t), and C is an initial state
constant.

The term B(t) accounts for the effect of electrical excitation on doping front
position. The terms θi,s and θi,h represent the effect of both LER and TF on mem-
ristive behavior. Moreover, the impact of the geometry variations on the electrical
properties of memristors could be affected by the electrical excitations. For exam-
ple, we can set α(0) = 0 to represent the case that the TiO2 memristor starts from
M(0) = RH . In such a condition, C becomes 0, and hence, the doping front position
α ′i (t) can be calculated as:

α
′
i (t) =

Ri,H −
√

R2
i,H −A ·B(t) · 2

θ 2
i,h

A
, (17)

which is affected only by TF and electrical excitations. LER will not disturb α ′i (t)
if the TiO2 thin-film memristor has an initial state α(0) = 0.

The overall memristance of the memristor can be calculated as the total resistance
of all n filaments connected in parallel. Again, i denotes the ith filament. When n
goes to ∞, we can have

R′H =
1∫

∞

0 1/R′i,H ·di
= RH ·

1∫
∞

0 θi,h/θi,s ·di
, (18)

and
R′L =

1∫
∞

0 1/R′i,L ·di
= RL ·

1∫
∞

0 θi,h/θi,s ·di
. (19)
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10 Hai (Helen) Li and Robinson E. Pino

The overall current through the memristor is the sum of the current through each
filament:

I′(t) =
∫

∞

0
I′i (t) ·di. (20)

The instantaneous memristance of the overall memristor can be defined as

M′(t) =
V (t)
I′(t)

=
1∫

∞

0 1/M′i ·di
. (21)

Since the doping front position movement in each filament will not be the same
because h′i varies due to TF (and/or the roughness of the electrode contact), we
define the average doping front position of the whole memristor as:

α
′(t) =

R′H −M′(t)
R′H −R′L

. (22)

3.2 Spintronic Memristor

Since the length of a spintronic memristor is usually much longer than the other
two dimensions, the impact of the variance in length on the spintronic memristor’s
electrical properties can be ignored. In our analysis, the device can be chopped into
infinite segments along the length direction as shown in Fig. 4. For a segment i, the
upper and lower bounds of memristance are:

R′i,H = Ri,H ·
θi,h

θi,z
,and R′i,L = Ri,L ·

θi,h

θi,z
. (23)

Here we assume the ideal memristance changes linearly within the domain wall,
or Mi changes linearly from R j,L to Rk,H when j < i < k. Here j and k are the

−5

0

5

10

15 0
50

100
150

200

0

5

10

l

3−D model for TMR−based spintronic memristor

z

h

i

Fig. 4 An example of 3D TMR-based spintronic memristor structure, which is partitioned into
many filaments in statistical analysis.

Springer Series in Cognitive and Neural Stystems 
Volume 4, 2012, pp 107-131

10



Statistical memristor model and its applications in neuromorphic computing 11

two segments at the two boundaries of domain wall and connected to the magnetic
domains with either the low or the high resistance states. The memristance of each
segment is

M′i =
{

R′i,L, i < α ′

R′i,H , i≥ α ′
(24)

So for overall resistance R′H and R′L, we have

R′H =
1∫

∞

0 1/R′i,H ·di
= RH ·

1∫
∞

0 θi,z/θi,h ·di
, (25)

and
R′L =

1∫
∞

0 1/R′i,L ·di
= RL ·

1∫
∞

0 θi,z/θi,h ·di
. (26)

Then the memristance of the whole device is

M′(α ′) =
1∫

α ′

0

1
R′i,L

di+
∫ 1

α ′

1
R′i,H

di

=
1∫

α ′

0

1
Ri,L
·

θi,z

θi,h
di+

∫ 1

α ′

1
Ri,H
·

θi,z

θi,h
di

(27)

Here the width of each segments zi varies segment by segment due to the LER
effect. The statistical behavior of spintronic memristors can still be evaluated by
Monte-Carlo simulation in Section 5.

We assume the current density applied on the domain wall J′(t) is the one of the
segments i where the domain wall located in the middle:

J′(t) = J′i =
V (t)

M′(α ′) ·L · z′i
. (28)

Then the domain wall velocity under process variations can be calculated as:

v′(t) = v′i =
dα ′(t)

dt
=

Γv

L
· J′e f f (t),

J′e f f =

{
J′,J′ ≥ Jcr
0 ,J′ < Jcr

(29)

4 3D Memristor Structure Modeling

Analytic modeling is a fast way to estimation the impact of process variations on
memristors. However, we noticed that in modeling some variations analytically, e.g.
simulating the LER, may be beyond the capability of analytic model [12]. The data

Springer Series in Cognitive and Neural Stystems 
Volume 4, 2012, pp 107-131

11



12 Hai (Helen) Li and Robinson E. Pino

on silicon variations, however, is usually very hard to obtain simply due to intel-
lectual property protection. To improve the accuracy of our evaluations, we create a
simulation flow to generate 3-D memristor samples with the geometry variations
including LER and thickness fluctuation. The correlation between the generated
samples and the real silicon data are guaranteed by the sanity check of the LER
characterization parameters. The flow is shown in Fig. 5.

Many factors affecting the quality of the line edges show different random ef-
fects. Usually statistical parameters such as the auto-correlation function (ACF) and
power spectral density (PSD) are used to describe the property of the line edges.

ACF is a basic statistical function of the wavelength of the line profile, represent-
ing the correlation of point fluctuations on the line edge at different position. PSD
describes the waveform in the frequency domain, reflecting the ratio of signals with
different frequencies to the whole signal.

Considering that LER issues are related to fabrication processes, we mainly tar-
get the nano-scale pattern fabricated by electron beam lithography (EBL). The mea-
surements show that under such a condition, the line edge profile has two important
properties: (1) the line edge profile in ACF figure demonstrates regular oscillations,
which are caused by periodic composition in the EBL fabrication system; and (2) the
line edge roughness mainly concentrates in a low frequency zone, which is reflected
by PSD figure [12].

To generate line edge samples close to the real cases, we can equally divide
the entire line edge into many segments, say, n segments. Without losing the LER
properties in EBL process, we modified the random LER modeling proposed in [28]
to a simpler form with less parameters. The LER of the ith segment can be modeled
by

LERi = LLF · sin( fmax · xi)+LHF · pi. (30)

The first term on the right side of Eq. (30) represents the regular disturbance at
the low frequency range, which is modeled as a sinusoid function with amplitude
LLF . fmax the mean of the low frequency range derived from PSD analysis. Without
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Fig. 5 The flow of 3D memristor structure generation including geometry variations.
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Table 2 The parameters/constraints in LER characterization.

Parameters Constraints
LLF 0.8 nm σLER 2.5nm ∼ 3.5nm
fmax 1.8 MHz σLWR 4.0nm ∼ 5.0nm
LHF 0.4 nm Sk 0.1nm ∼ 0.2nm

/ / Ku 2.5nm ∼ 3.5nm

loss of generality, a uniform distribution xi ∈U(−1,1) is used to represent an equal
distribution of all frequency components in the low frequency range. The high fre-
quency disturbances are also taken into account by the second term on the right side
of Eq. (30) as a Gaussian white noise with amplitude LHF . Here pi follows the nor-
mal distribution N(0,1) [12]. The actual values of LLF , LHF and fmax are determined
by ACF and PSD.

To ensure the correlation between the generated line edge samples with the mea-
surement results, we introduce four constraints to conduct a sanity check of the
generated samples:

• σLER: the root mean square (RMS) of LER;
• σLWR: the RMS of line width roughness (LWR);
• Sk: skewness, used to specify the symmetry of the amplitude of the line edge;

and
• Ku: kurtosis, used to describe the steepness of the amplitude distribution curve.

The above four parameters are widely used in LER characterization and can be
obtained from measurement results directly [12]. Only the line edge samples that
satisfy the constraints will be taken as valid device samples. Table 2 summarizes
the parameters used in our algorithm, which are correlated with the characterization
method and experimental results in [12]. And Fig. 6 shows the LER characteristic
parameters distribution among 1000 Monte-Carlo simulations.

Even the main function has captured the major features of LER, it is not enough
to mimic all the LER characteristics. The difference between real LER distribution
and our modeling function results in the fact that some generated samples are not
qualified compared to the characteristic parameters, or the constraints of the real
LER profile. Thus, sanity check which screens out the unsuccessful results is nec-
essary. Only those samples in red rectangles shown in Fig. 6 satisfy the constraints
and will be used for the device electrical property analysis. The criteria of the sanity
check are defined based on the measurement results of real LER data.

The thickness fluctuation is caused by the random uncertainties in sputter depo-
sition or atomic layer deposition. It has a relatively smaller impact than the LER
and can be modeled as a Gaussian distribution. Since the memristors in this work
have relatively bigger dimensions in the horizontal plane than the thickness direc-
tion (shown in Table 1), we also considered roughness of electrode contact in our
simulation: The means of the thickness of each memristor is generated by assuming
it follows the Gaussian distribution. Each memristor is then divided into many fila-
ments between the two electrodes. The roughness of electrode contacts is modeled
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Fig. 6 LER characteristic parameters distribution among 1000 Monte-Carlo simulations. Con-
straints are shown in red rectangles.

based on the variations of the thickness of each filament. Here, we assume that both
thickness fluctuations and electrode contact roughness follow Gaussian distributions
with a deviation σ = 2% of thin film thickness.

Fig. 3 is an example of 3D structure of a TiO2 thin-film memristor generated by
the proposed flow. It illustrates the effects of all the geometry variations on a TiO2
memristor device structure. According to Section 3, a 2-D partition is required for
the statistical analysis. In the given example, we partition the device into 25 small
filaments with the ideal dimensions of L = 10nm, z = 10nm, and h = 10nm. Each
filament can be regarded as a small memristor, which is affected by either only TF
or both LER and TF. The overall performance of device can be approximated by
paralleled connecting all the filaments.

Similarly, Fig. 4 is an example of 3D structure of a TMR-based spintronic mem-
ristor. Since the length of a spintronic memristor is much longer than its width and
height, only 1-D partition along the length direction is required. In this case, the
device is divided into 200 filaments. Ideally, each filament has L = 1nm, z = 10nm,
and h = 7nm. Each filament i is either in the low resistance state R′i,L or the high
resistance state R′i,H , with considering the effects of both LER and TF. The overall
performance of device can be approximated by paralleled connecting all the fila-
ments.

5 Experimental Results

5.1 Simulation Setup

To evaluate the impact of process variations on the electrical properties of mem-
ristors, we conducted Monte-Carlo simulations with 10,000 qualified 3-D device
samples generated by our proposed flow. A sinusoidal voltage source shown in Eq.
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Table 3 Memristor Devices and electrical parameters

TiO2 thin-film memristor [2]
RL(Ω ) RH (Ω ) µv(m2 · s−1 · V−1) / Vm (V) f (Hz)

100 16000 10−14 / 1 0.5
Spintronic memristor [15]

RL(Ω ) RH (Ω ) Γv(nm3· C−1) Jcr (A / nm2) Vm (V) f (Hz)
2500 7500 2.01×10−14 2.00×10−8 2 10M

(15) is applied as the external excitation. The initial state of the memristor is set as
M(α = 0) = RH . The device and electrical parameters used in our simulations are
summarized in Table 3. Both separate and combined effects of geometry variations
on various properties of memristors are analyzed, including:

• the distribution of RH and RL;
• the change of memristance M(t) and M(α);
• the velocity of wall movement v(α);
• the current through memristor i(t); and
• the I-V characteristics.

5.2 TiO2 Thin-Film Memristor

The ±3σ (minimal/maximal) values of the device/electrical parameters as the per-
centage of the corresponding ideal values are summarized in Table 4. For those
parameters that vary over time, we consider the variation at each time step of all the

 

 Fig. 7 Simulation results for TiO2 thin-film memristors. The blue curves are from 100 Monte-
Carlo simulations, and red lines are the ideal condition. From top left to right bottom, the figures
are RH vs. RL; M(t) vs. t; v vs. α; α vs. t; I vs. t; and I−V characteristics.
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Table 4 3σ min./max. of TiO2 memristor parameters

Sinusoidal LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH &RL -5.4 4.1 -5.5 4.8 -6.4 7.3
M(α) -5.4 4.1 -37.1 20.8 -36.5 24.1
α(t) 0.0 0.0 -13.3 27.5 -14.7 27.4
v(α) 0.0 0.0 -9.3 15.6 -10.4 16.9
i(α) -4.7 5.7 -9.3 15.7 -10.7 17.2

Power -4.7 5.7 -8.8 14.1 -10.1 15.6

Square wave LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH &RL -5.3 3.7 -6.2 5.2 -6.6 6.9
M(α) -5.3 3.7 -17.8 13.2 -15.4 14.4
α(t) 0.0 0.0 -12.1 16.6 -13.0 15.6
v(α) 0.0 0.0 -11.6 17.7 -12.5 16.7
i(α) -4.0 5.2 -11.7 17.7 -12.6 17.6

Power -4.0 5.2 -7.7 9.8 -8.5 10.1

devices. The simulation results considering only either LER or TF are also listed. To
visually demonstrate the overall impact of process variations on the memristive be-
havior of TiO2 memristors, the dynamic responses of 100 Monte Carlo simulations
are shown in Fig. 7.

Table 4 shows that the static behavior parameters of memristors, i.e., RH and
RL, are affected in a similar way by both LER and thickness fluctuations. This is
consistent to our analytical results in Eq. (18) and (19), which show that θs and θh
have the similar effects on the variation of R′H and R′L.

However, thickness fluctuation shows a much more significant impact on the
memristive behaviors such as v(t), α(t) and M(α), than LER does. It is because
the doping front movement is along the thickness direction: v(t) is inversely pro-
portional to the square of the thickness, and α(t) is the integral of v(t) over time as
shown in Eq. (10) and (11). For the same reason, thickness fluctuations significantly
affect the instantaneous memristance M(α) as well.

Because the thickness of the TiO2 memristor is relative small compared to other
dimensions, we assume the doping front cross-section area is a constant along the
thickness direction in our simulation. The impact of LER on α(t) or v(t), which is
relatively small compared to that of the thickness fluctuations, is ignored in Table 4.

An interesting observation in Fig. 7 is that as the doping front α moves toward
1, the velocity v regularly grows larger and reaches its peak at the half period of the
sinusoidal excitation, i.e. t=1s. This can be explained by Eq. (12): the memristance
is getting smaller as α moves toward 1. With the same input amplitude, a smaller
resistance will result in a bigger current and therefore a bigger variation on v(t).
Similarly, memristance M(α) reaches its peak variance when α is close to 1.

We also conduct 10,000× Monte Carlo simulations on the same samples by ap-
plying a square wave voltage excitation. The amplitude of the voltage excitation is
±0.5V. The simulation results are also shown in Table 4. The results of the static
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Statistical memristor model and its applications in neuromorphic computing 17

behavior parameters, i.e., RH and RL, are exactly the same as those with sinusoidal
voltage inputs because they are independent of the external excitations, The results
of the memristive behavior parameters such as v(t), α(t) and M(α) show similar
trends as those with the sinusoidal voltage inputs. Based on Eq. (16), α(t)’s vari-
ance is sensitive to the type and amplitude of electrical excitation, because B(t)
greatly affects the weight of the thickness fluctuation parameter. That is why the
thickness fluctuation has a significantly impact on the electrical properties of mem-
ristors under sinusoidal and square voltage excitations.

5.3 Spintronic Memristor

The ±3σ values of the device/electrical parameters based on 10,000 Monte-Carlo
simulations are summarized in Table 5. The visual demonstration of 100 Monte-
Carlo simulations with a sinusoidal voltage excitation is shown in Fig. 8.

For the spintronic memristor, the impact of LER on the electrical properties of
memristors is more than that of thickness fluctuation. This is because the direction
of the domain wall movement is perpendicular to the direction of spin-polarized
current. The impact of thickness fluctuations on very small segments cancel each
other during the integral along the direction of the domain wall movement.

“LER only” simulation results show that the +3σ corner of LER has more im-
pact on the electrical properties than that of −3σ corner. This is because the line
width variation is the dominant factor on the variation of electrical properties of
spintronic memristors, and the line edge profiles used in our LER parameters have

 

 

 

 

Fig. 8 Simulation results for spintronic memristors. The blue curves are from 100 Monte-Carlo
simulations, and red lines are the ideal condition. From top left to right bottom, the figures are RH
vs. RL; M(t) vs. t; v vs. α; α vs. t; I vs. t; and I−V characteristics.
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Table 5 3σ min./max. of spintronic memristor parameters

Sinusoidal LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH &RL -15.3 22.9 -6.1 5.8 -16.4 20.9
M(α) -15.1 23.3 -11.0 11.0 -16.3 21.1
α(t) -9.7 8.1 -8.4 9.5 -11.8 8.1
v(α) -10.7 22.1 -9.1 9.9 -21.5 22.5
i(α) -18.5 18.5 -8.9 10.1 -17.7 17.8

Power -18.4 18.6 -8.3 9.4 -17.8 17.8

Square wave LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH &RL -15.8 22.0 -5.3 5.7 -15.9 24.2
M(α) -15.6 21.8 -8.5 9.7 -17.0 25.5
α(t) -13.1 13.8 -7.5 7.7 -17.2 16.2
v(α) -16.5 20.7 -10.0 8.3 -20.1 25.2
i(α) -19.5 17.1 -9.0 9.3 -22.1 20.5

Power -19.4 17.1 -7.6 7.7 -20.9 19.6

a right-biased feature [12]. Since normal distribution is assumed for the variations
of thickness, σh has approximately symmetric impact on ±3σ corners.

The impact of LER on the memristive parameters v(t), α(t) and M(α) is also
larger than thickness variation. Again, the impact of thickness fluctuations on very
small segments cancel each other during the integral along the direction of the do-
main wall movement.

Similarly, we also conduct Monte Carlo simulations by applying a square wave
voltage excitation. The amplitude of the voltage excitation is ±1V. The similar
trends as that of sinusoidal excitations are observed.

6 Memristor-based Synapse Design

6.1 The Principle of Memristor-based Synapse

Rather than using memristor crossbar array in neuromorphic reconfigurable archi-
tecture, we propose a memristor-based synapse design to mimic the biological struc-
ture. Fig. 9(a) depicts the conceptual scheme, which simply consists of a NMOS
transistor (Q) and a memristor. When the input Vin is low, Q is turned off and the
output Vout is connected to ground through the memristor. On the contrary, when
Vin is high and turns on Q, memristance M and the equivalent resistance of Q (RQ)
together determine Vout :

Vout = f (Vin ·M). (31)
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Fig. 9 (a) Proposed synapse design. (b) Synapse output vs. memristance.

Here, Vout is weighted by the memristance, which behaves like a synapse. Fig. 9(b)
shows the simulated Vout when sweeping the memristance from 1KΩ to 16KΩ .
Here, CMOS devices used TSMC 0.18µm technology.

Note that the response of the synapse design is dependent on the equivalent re-
sistance of the transistor Q (RQ), or, the size of Q. This can also be demonstrated in
Fig. 9(b) by sweeping the width of Q from 220nm to 4.4µm with a step of 220nm.
The simulation shows that a larger Q can result in a wider range of Vout with poorer
linearity. However, for a large Q, the enhancement of Vout by further increasing its
size is marginal. To improve design stability, a buffer can be added at output of
the synapse to increase voltage swing. Furthermore, some circuit optimization tech-
niques, such as asymmetry gate in other blocks, can be used to minimize the overall
synapse-based system.

6.2 Synapse Training Circuit

Being self-adaptive to the environment is one of the most important properties of
a biological synapse. To accomplish the similar functionality, a training block is
needed in the memristor-based synapse that can adjust its memristance.

6.2.1 Memristor Training Circuit

Fig. 10(a) shows the diagram of training circuit for one synapse design, based on
logic analysis and simplification. It includes two major components: training con-
troller and write driver. By comparing the current synapse output Vout and the ex-
pected output Dtrain, training controller generates the control signals. The write
driver uses these signals to control two pairs of NMOS and PMOS switches and
supply training voltage pair Vtop and Vbot . The training pair is applied to the two
terminals of the memristor in the synapse design.
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Fig. 10 (a) The training circuit diagram. (b) The proposed synapse together with training circuit.

Determined by the training enable signal E, the training circuit can work under
two modes.

• Operating mode: When E = 0, the synapse is under regular operating (read)
mode, and the training circuit is disabled.

• Training mode: The training circuit is enabled when E = 1. By comparing the
current synapse output Vout and the expected Dtrain, the training circuit generates
Vtop and Vbot applied to the two terminals of memristor to update or keep its
memristance. We define Vmem =Vtop−Vbot .

Fig. 10(b) depicts the proposed memristor-based synapse integrated with train-
ing circuit. An extra NMOS transistor Q2 is inserted in synapse to isolate training
operation from other voltage sources: when E = 1, Q2 is turned off so that the two
terminals of memristor are controlled only by the training circuit, not affected by
Vin.

The timing diagram of training circuit is demonstrated Fig. 11(a). Before a train-
ing procedure starts, a sensing step is required to detect the current Vout to be com-
pared with Dtrain. In the sensing phase, accordingly, training enable signal E is set
to low for a very short period of time (e.g., 4.5ns) at the beginning of training. At
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Fig. 11 (a) The timing diagram of training circuit. (b) The simulation result of memristor training.
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Table 6 Sizing of INV1 and Q1

P/N Ratio PMOS/NMOS in INV1 Q1
2 720nm/360nm 18×220nm
2 440nm/220nm 16×220nm
1 360nm/360nm 12×220nm
1 220nm/220nm 11×220nm

0.5 360nm/720nm 9×220nm
0.5 220nm/440nm 9×220nm

the same time, (V ′out ) is sent to Latch, whose output (V ′out ) remains constant during
one training period, as shown in Fig. 10(a). In the training phase, E is set back to
high for a much longer time (i.e., 51ms) to change the memristance if needed.

We tested the training procedure by using the TiO2 memristor model [2]. The
training circuit was designed by using TSMC 0.18µm technology with VDD = 1.8V .
Changing memristance from RH to RL or verse vice takes about 51ms. The simula-
tion result is shown in Fig. 11(b). Here, the memristance is initialized as M = 16KΩ .
In the first 51ms, it is trained to 1KΩ by setting Dtrain to low. Then at t = 51ms, we
set Dtrain to high and train the memristance back to RH in the following 51ms.

6.2.2 Asymmetry Gate Design

The size of Q1 affects the range of Vout . Instead of adding buffer or having giant
Q1 in synapse, the asymmetry gate design can be adopted to minimize the layout
area of synapse design. More specifically, we tuned P/N ratio of INV1 in the training
circuit (see Fig. 10(a)). Table 6 summarizes the required sizes of INV1 and Q1 under
different combinations that can make training successful. The result shows that the
asymmetric design with P/N ratio = 0.5 can obtain the smallest area. The last option
is used in the following synapse analysis.

(a) (b)(a) (b)

Fig. 12 (a) Two-input neuron structure. (b) Training sharing distribution circuit.
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Table 7 Training sharing circuit operation

Status Vtop1 Vbot1 Vtop2 Vbot2
Training M1 Vtop Vbot Floating 0
Training M2 Floating 0 Vtop Vbot

Table 8 Synapse input pairs for different logics

Function of N Training M1 Training M2
OR/NOR A1 = 1, A2 = 0 A1 = 0, A2 = 1

XOR/XNOR A1 = 1, A2 = 0 A1 = 0, A2 = 1
AND/NAND A1 = 1, A2 = 1 A1 = 1, A2 = 1

6.2.3 Multi-synapse Training Scheme

Most of the neuron systems are constructed by multiple synapses. In this subsec-
tion, we discuss the corresponding training scheme by taking a 2-synapse neuron in
Fig. 12(a) as the example. Here, A1 and A2 are two synapse inputs received from
other neurons. M1 and M2 are memristor-based weights for two synapses S1 and S2.
N is denoted for neuron with output Vout . The value of Vout depends on the func-
tionality of N as well as Vout1 and Vout2 from the two synapses. With the different
combinations of M1 and M2, the two-input neuron could obtain different function-
ality.

To save design cost, memristances of the 2-synapse can be trained separately and
share one training circuit. Fig.12(b) shows a training sharing distribution circuit,
which generates training signals to control M1 and M2. The training sharing circuit
operations under different conditions are shown in Table 7.

The two synapse inputs A1 and A2 can be used to determine which memristor, M1
or M2, is in training. Table 8 lists the required A1 and A2, when the logic functionality
of N is one of the following: OR/NOR, XOR/XNOR, AND/NAND.

Compared to the separated training circuit for each memristor, the shared scheme
can reduce 26% of training circuit transistor count. More saving in cost and area can
be obtained when utilizing this training sharing distribution scheme to multi-synapse
structure with more inputs.

6.2.4 Self-Training Mode

To improve training time and reduce power consumption, we introduce the concept
of self-training in our design: rather than using a fixed long training period (i.e.,
51ms), the self-training mode automatically stop programming memristor whenever
Vout and Dtrain become same.

The proposed training circuit supports self-training mode by dividing a long
training period into multiple shorter periods and detecting Vout in between. The pro-
gramming period needs to be carefully selected: if it is too short, the delay and
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Fig. 13 Self-training simulation.

energy overheads induced by Vout detection may overwhelm the benefit of self-
training. On the contrary, a long programming period cannot show enough benefit.

The simulation result in Fig.13 shows the memristance changing when sweeping
programming period from 5.1ms to 51ms in 10 steps. Obviously, the self-training
mode could significantly reduce training time. In theory, the proposed training cir-
cuit can train the memristance to any value between RH and RL. The real training
time is determined by the specific application and neuron functionality.

7 Conclusion

In this work, we evaluate the impact of different geometry variations on the elec-
trical properties of two different types of memristors, TiO2-based memristors and
spintronic memristors, by conducting analytic modeling analysis and Monte-Carlo
simulations. We investigate the different responses of the static and memristive pa-
rameters of the two memristors under various process variations and analyze their
implication for the electrical properties of the memristors. A simple LER sample
generation algorithm is also proposed to speed up the related Monte-Carlo simula-
tions. At the end, we propose a memristor-based synapse that can be used in neu-
romorphic computing architecture. The corresponding training operations including
multi-synapse schemes and self-training have also been explored and discussed. The
proposed synapse design can be generalized to other memristor materials for more
applications.
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